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ABSTRACT 

It is shown that a weakly closed operator algebra with the property that each 
of its invariant subspaces is reducing and which is either strictly cyclic or has 
only closed invariant linear manifolds, must be avon Neumann algebra. 

1. Introduction 

Let .,~ be a complex Hilbert space. The well known transitive algebra problem 

is the question: must a weakly closed algebra of operators which contains the 

identity and whose only invariant subspaces are {0} and Y~' be the algebra of all 

operators on .~? In the case where ~ is finite-dimensional, the affirmative answer 

to the above is Burnside's Theorem (see [2, p. 101]). 

Arveson's work [1] on the transitive algebra problem led to research on this 

question by a number of authors ([3], [7], [9], [10], [11]). Many partial results 

have been obtained, but the problem is still unsolved in general. 

The reductive algebra problem, raised in [12], is the question: if 9/is a weakly 

closed algebra of operators on ~F which contains the identity and which has the 

property that all of its invariant subspaces are reducing, must 9 /be  self-adjoint? 

As observed in [12], an affirmative answer to this question would imply an 

affirmative answer to the transitive algebra problem. Partial results have been 

obtained in [8], [14] and [12], but the reductive algebra problem is also still 

unsolved. 
Here we present several other results on the reductive algebra problem. We show 

that a reductive algebra 9/with the property that every densely defined graph 

transformation of 9/is bounded, must be self-adjoint. This gives generalizations 

of the results of Foias ([5], [6]), Herrero [7] and Lambert [9] concerning 
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transitive algebras, and also yields certain other special cases of the reductive 

algebra problem. 

2. Preliminaries 

In the following, an operator algebra is a weakly closed algebra of bounded 

operators on a Hilbert space which contains the identity. If  92 is an operator 

algebra, then Lat 92 denotes the collection of all closed linear subspaces of the 

Hilbert space which are invariant under 92. The operator algebra 92 is reductive 

if ./r e Lat 92 implies ~ ' L ~  Lat 92, or, equivalently, if Lat 92 = Lat 92* (where 

92* = {A*:A ~ 92}). I f  aW is a Hilbert space and n is a positive integer, then 

.;r denotes the direct sum of n copies of ~t ~, and if A is an operator on .Yt ~, then 

A c') denotes the direct sum of n copies of A, acting on ~ '"~ in the standard 

fashion. 

If  92 is an algebra of operators on ~P, then ~{") = {A (n): A e 92}. We use 92' to 

denote the commutant of 92. 

If  92 is an operator algebra and ./# �9 Lat 92{"), then .////is an invariant graph 

subspacefor 92{~) if there exist linear transformations Tt, " ' ,  Tn-t with a common 

domain ~ ,  ( ~  a linear manifold different from {0} in A e) such that 

= {x ~ Tlx O) "" O) T,- lx:  x � 9  

A linear transformation T is a graph transformation for 92 if, for some n, T occurs 

as one of the T,'s in an invariant graph subspace for 92{n). 

3. The main result 

THEOREM. Let 92 be a reductive algebra on .~.  I f  every densely defined graph 

transformation of 92 is bounded, then 92 is self-adjoint. 

We have divided the proof of the above theorem into a series of lemmas. 

The following is a special case of an easy, well-known result. 

LEMMA 1. I f  9A (") is reductive for every positive integer n, then 9.[ is self- 

adjoint. 

PROOF. See [-12, Lemma 2]. 

LEMMA 2. I f  92 is reductive, 92'= (92")', and every densely-defined graph 

transformation for 92 is bounded, then 92 is self-adjoint. 

PROOF. The basic ideas of the proof are from [12]. By Lemma 1, it suffices to 

show that ..r Lat 92{n) implies Jk' e Lat (92,)~n) for each positive integer n. This 
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holds for n = 1 by hypothesis; we proceed by induction. Assume that the case n 

is known and let .//t ~ Lat 9J ~"+1). If .A/" is the subspace of d [  consisting of all 

vectors whose first component is 0, then ./Ve Lat (9/~,+1~ n Lat (9/,)t,+1) by the 

induction hypothesis. Now . / / / Q . / V e L a t  (gJ ~"+1), and dfG./V" is a graph 

subspace (see [12]); 

,I,' G) W = { x | T I x q3 . . . G T, x : x ~ 3 } 

for some linear manifold ~ and linear transformations {T~} with domain ..~. 

Then 3 is invariant under 9 / and  AT, = T~A for all A ~ 9/. 

Let P denote the projection onto 3 '  and define 7~t by ;Pix = TiPx for all x 

such that Px  ~ 3 .  Then 

{x @ T t x G " "  G T , x : P x e 3 }  

= d / Q W ( ~ { y G O @ . . . @ O : y ~ 3 " }  

is an invariant subspace of 9/~,-1). Hence 7~: is a densely defined graph trans- 

formation for 9/, and 7~i is bounded for each i. It follows that each 7~, is in 9/' 

= (9/*)', and, since P ~ 9/', this implies that T~A* = A'T, for each A ~ 9/. Since 

, / t  O,/V is a closed subspace, ~ is closed and reduces 9/. This implies that 

�9 //[ O ,/V ~ Eat(9/*) ~"+ 1). Thus .//t = (,/It O .#') q~ ./V is in Lat (9/*)~"+ 1) 

To prove the Theorem we need only to show that the hypothesis 9[' = (9/*)' in 

Lemma 2 is superfluous. 

LEMMA 3. Let 9/ be a reductive algebra.  U T ~ 9 / '  and T 2 = 0 ,  then 

T ~ (9/*)'. 

PROOF. Suppose T satisfies the hypothesis, and let ; (  denote the null space 

of T. Then T has the form 

(~ 2) 
with respect to the decomposition Y G ~ "  of ~'~'. Now Y is invariant, and 

hence reducing, for 9/, and therefore S e 9/implies 

S =  $2 

with respect to this decomposition. Since 

(~  C 0 $1 0 0 C 

ol C' io ol 
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it follows that CS2 = S~C. Thus the subspace {Cx @ x: x ~o~f "• is in Lat 91 and 

is invariant under 91". If  

A =  A2 , 

this shows that CA* -- A'C, and therefore T~ (91')'. 

The following lemma is implicitly contained in [6], [7], and [9]. 

LEMMA 4. Let 91 be an operator algebra with the property that every closed 

densely defined linear transjormation that commutes with 91 is bounded. I f  

T ~ (91)', then 

a(T) = rlo(T ) t3 no(T*),  

(where Ho denotes point spectrum and " - "  denotes complex conjugation). 

PROOF. Suppose T~(9~r)' and 2~a(T) .  I f 2  ~rio(T) U Ho(T*), then ( T - 2 )  is 

one to one and has dense range. Then ( T -  2) -~ xs a well-defined closed linear 

transformation with dense domain, and clearly ( T -  2) -~ commutes with 91. 

The hypothesis implies that ( T -  2) -~ is bounded, which contrad,cts the fact 

that 2 ~ a(T). 

LEMMA 5. I f  91.I is reductive and every closed densely defined linear trans- 

formation that commutes with 91 is bounded, then every cotlection of mutually 

orthogonal nontrivial members of Lat 91 is finite. 

PRooF. If this were not the case, then there would exist infinitely many mutually 

uff ~o for 91/. Let "/fro = (7,=~ {.A/'~} orthogonal nontrivial reducing subspaces { ~}j = 1 

and ~/' be the set of all vectors x = ZT= o @ xj with xj e..g'j and 

IJl llx ll2 < |  
j = l  

Then ../t' is obviously invariant under 91. Moreover, ~ is the domain of  the closed 

operator 

jffil j=O 

Where I) is the identity operator on ~4/'j. Since ~ '  is dense in ~ and T commutes 

w.th 9i, T is bounded by hypothesis, which is clearly a contradiction. 

PROOF OF THEOREM. By Lemma 2, it suffices to show that T e 91' implies 

T e (91")'. So suppose T e 91' and let 2a e a(T). Then 21 is an eigenvalue of T or 
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~1 is an eigenvalue of T*. IfExl is the eigenspace (of either T or T*) corresponding 

to 21, then Eal reduces 91 and 91". If P1 is the projection o f ~  onto Ea,, P1TP 1 is 

a multiple of P~. 

Now consider the compression 7"1 of T to (Ea) • Since 911E~-~ satisfies the 

hypothesis of Lemma 4, (Lemma 4 does not require 91 closed), we can find 

2 2 ~ 6(7"1) such that 22 or ~2 is in IIo(T 0. If Ex 2 is the eigenspace corresponding 

to 22 or ~2 and P2 is the projection of ~'~ onto Ex2, then Ea2 reduces 91 and P2TP 2 

is a multiple of P2. Now consider the compression of T to (Ea, @ Ex,) l ,  and 

produce an Ea~ as above. 

It follows from Lemma 5 that the procedure indicated above will terminate 

after a finite number of steps and produce a set {Ea,}~="x of mutually orthogonal 

subspaces such that ET= 1 @ E~.. = ~f  and for each i, P~TP~ is a scalar multiple 

of Pv 

Now T =  ]~",j=l PiTPi and since, for each i, P ~  91' t'~ (91')', it is enough to 

show that PiTPj e (91")' for i # j. But in this case (P~TPj) 2 = 0 and Lemma 3 

applies. This completes the proof. 

4. Corollaries 

As mentioned in the introduction, a solution to the reductive algebra problem 

leads to a solution to the transitive algebra problem. Our first corollary is essen- 

tially known, (cf. [6], [9]). 

COROLLARY 1. Let 91 be a transitive algebra on 3r ~. I f  every densely defined 

graph transformation of 91 is bounded, then 91 = B(~ ) .  

It is well known (see, for example, [13, p. 61]) that strictly transitive algebras 

are strictly dense in B(W). The next corollary is essentially a generalization of 

this fact. It includes, in particular, the (already-known) solution of the reductive 

algebra problem in the finite-dimensional case (cf. [2], [12]). 

COROLLARY 2. I f  9I is reductive and every invariant linear manifold of 91 is 

closed, then 91 is self-adjoint. 

PROOF. Let T be a densely defined graph transformation of 91 with domain 9 .  

Then, since ~ is invariant under 91, 9 is closed. If ./r = {x ~ Tx @... ~ T,x: 

x E ~} is the corresponding member of Lat 91("+ ~), then the map x ~ Tx ~ T2x @ 

�9 .. @ T,x is bounded by the closed graph theorem, and thus T is bounded. 

< linear manifold .2' o f ~  is an operator range if there exists a Hilbert space 
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and a bounded operator A from o,~ into ~ such that La = A~". The next corollary 

generalizes the result of  Foias ([5], [6]) concerning transitive algebras. An 

excellent account of the known facts about operator ranges is given in [4]. 

COROLLARY. 3. Let 9~ be a reductive algebra such that every invariant operator 
range of 9~ is closed. Then ~ is self-adjoint. 

PROOF. If  ~ is the domain of  any graph transformation T of 9~, then ~ is an 

operator range and therefore is closed. Thus, as in Corollary 2, T is bounded. 

An operator algebra 9~ is of finite strict multiplicity if there exists a finite set 

{x~}~= 1 of vectors such that the linear span of {Axi: A ~ 9A} is ~ .  

Herrero 1-7] has generalized the result of Lambert [9] in the case n = 1 to show 

that a transitive algebra containing an algebra 9~ of finite strict multiplicity is 

B(~). 

COROLLARY4. A reductive algebra containing an algebra of finite strict 

multiplicity is self-adjoint. 

PROOF. By a result of  Herrero [-7, Lemma 1], every graph transformation of 9~ 

is bounded, and the theorem applies. 

REMARK. (i) Lemma 5 and an argument similar to that in 1-12, Th. 1] show 

that a v o n  Neumann algebra with the property that every closed densely defined 

linear transformation commuting with it is bounded must be a direct sum of a 

finite number of type I factors. 

(ii) It follows easily from Lemma 3 that if A is an algebraic operator which 

commutes with a reductive algebra 9A then A E(gA*)'. For such an A can be 

written in the form 

A = 

)L1 Alz "'" A1. 

2 A,_ 1 
o 

�9 "~n 

with respect to a decomposition of ~ into a direct sum ~ =  1 @ A'~i where each 

~r reduces ~.  Then if Pi is the projection of ~ onto ~f'~, P~A Pj ~ 9A', and by 

Lemma 3, P~AP~ ~ (9A*)'. Hence A = ~ P,APj is in (9~*)'. 
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